Interacting systems
 
[3a-theory] BH, “Analytical theory of cat scars with discrete time crystalline dynamics in Floquet systems”,
Phys. Rev. B 108, 104309 (2023)
  
arXiv:2302.08056
→ Long-range entangled "cat scars" with engineerable patterns, quantified analytically.
 
[3b-experiment] Z. Bao, S. Xu, Z. Song, K. Wang, L. Xiang, Z. Zhu, J. Chen, F. Jin,
X. Zhu, Y. Gao, Y., C. Zhang, N., Y. Zou, Z. Tan, A. Zhang, Z. Cui, F.
Shen, J. Zhong, T. Li, J. Deng, X. Zhang, H. Dong, P. Zhang, Y.-R. Liu, L. Zhao,
J. Hao, H. Li, Z. Wang, C. Song, Q. Guo, BH, H. Wang, “Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors”,
Nat. Commun. 15, 8823 (2024)
  
arXiv:2401.08284
→ Watch Schrödinger's fat cat dance! Protecting large scale GHZ states with cat scar enforced discrete time crystals in superconducting qubits.
 
[2] BH, Tsz Him Leung, Dan Stamper-Kurn, W. Vincent Liu, “Discrete time crystals enforced by Floquet-Bloch scars”,
Phys. Rev. Lett. 129, 133001 (2022)
  
arXiv:2205.07919
→ Analytical solution pointing out the mechanism for a small-cluster discrete time crystal: quantum scars
 
[1] BH, Ying-Hai Wu and W. Vincent Liu, “Clean Floquet time crystals: models and realizations in cold atoms”,
Phys. Rev. Lett. 120, 110603 (2018)
  
arXiv:1703.04663
→ Numerical confirmation of discrete time crystal behaviors in disorder-free systems without prethermal conditions