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We review the recent development in constructing higher-order topological band insulators under strong pe-
riodic drivings. In particular, we focus on various approaches in formulating the anomalous Floquet topological
invariants beyond (quasi-)static band topology, and compare their different physical consequences.
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I. INTRODUCTION

Recently, our theoretical tools for quantum many-body sys-
tems have been significantly updated by studies on several
classes of intrinsically time-dependent problems. For in-
stance, the anomalous Floquet topological insulators for free
fermions transcend the traditional characterization by Hamil-
tonian eigenstates (i.e. static band topology), and requires
examinations of evolution operators with genuinely time-
dependence [1–3]. Its generalization to interacting cases pro-
duces the Floquet symmetry-protected-topological phases [4–
10]. Further introducing spatial or internal symmetry break-
ing into these systems leads to the intriguing Floquet/discrete
time crystals [11–13] exhibiting rigid bulk temporal orderings.
Among all these phases, a common feature is that one can no
longer rely on the thermal equilibrium properties of an effec-
tive quasi-static Hamiltonian to understand the physics.

This review focuses one topic for far-from-equilibrium
systems, namely, the recent rapid progress of understand-
ing the anomalous Floquet higher-order topological insulators
(AFHOTI). We would aim at giving a pedagogical review of
the model, features, and constructions of topological indices
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unique of these systems. In particular, we would emphasize
the subtle differences of topological indices constructed sepa-
rately in independent works, and point out crucial distinctions
of their physical consequences.

AFHOTIs are based on two different fields of anomalous
Floquet phases and the higher-order topological insulators.
Therefore, it is useful to first review some basic concepts in
these two fields and see the need of new concepts and theories
for combing them.

For a periodically driven (dubbed Floquet) systems with
Hamiltonians Ĥ(t + T ) = Ĥ(t), one can compare the driving
frequency ω = 2π/T with the Hamiltonian internal frequency
scales J/~, where J denotes the strength of hopping, chemical
potential, and etc., to classify problems into different regimes.

Traditionally, one usually handles the following two limits.

1. Higher frequency limit ω � J/~, where the internal
Hamiltonian system cannot follow the drivings which
change rapidly, but instead experiences a time-averaged
effect. The lowest order “effective Hamiltonian” here
Ĥeff = 1

T

∫ T
0 dtĤ(t) corresponds to the lowest order

Magnus expansion in terms of inverse frequencies 1/ω.
That leads to the so-called Floquet engineering, where
one could start from a set of relatively simple and exper-
imentally accessible Hamiltonian Ĥ(t) at each instant,
and end up with a desirable time-independent Ĥeff. Ex-
amples of Floquet engineering ranges from interactions
of solid-state systems with polarized light [14] to the re-
cent cold atom achievement of novel topological phases
through Raman or shaken lattice schemes [15–17].

2. Low frequency limit ω � J/~ (also dubbed the adi-
abatic limit), where the external drivings are so slow
that the system can approximately relax to and stay in
its ground state at each instant. Then, time is just an-
other way to denote certain parameters in the quasi-
static Hamiltonian. One well-known example is the
Thouless pump for topological insulators, where an adi-
abatic deformation of the Hamiltonian causes a quan-
tized charge transfer across the whole system [18–20].

In contrast, this review would focus on the third regime
where the driving frequency ω is comparable to the Hamil-
tonian frequency scales J/~. That gives rise to a set of so-
called “anomalous” Floquet topological phases originally in-
vestigated in Refs. [1, 21] concerning the anomalous Flo-
quet Chern insulator. Soon, the anomalous Floquet phases
have been generalized to all 10 Altland-Zirnbauer symmetry
classes for insulators and also semimetals (see i.e.[2, 3]). The
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word “anomalous” refers to a peculiar feature for such sys-
tems that all of the Floquet quasienergy bands hosts trivial
topology, while robust edge modes still exists due to a new
type of time-dependent topology described by the evolution
operator. In other words, the time dependence is no longer
merely a method of engineering or an adiabatic parameter
treated in the static sense, but would play a central role in
constructing the anomalous Floquet topology.

Meanwhile, since 2017, a new class of topological phases
has emerged dubbed higher-order topological insulators
(HOTI) [22–29]. Compared with previous cases where the
topological properties of a d-dimensional bulk give rise to
(d − 1)-dimensional boundary states, HOTI features bound-
ary modes of reduced dimensionality. For instance, HOTI in
two/three dimensional lattices could host a zero dimensional
corner modes, and HOTI in three-dimensions may exhibit a
one-dimensional hinge mode along the intersection of two
boundary surfaces. For the beginning two years, researchers
of HOTI have chiefly been focusing on the static situa-
tions [30–38], including extensions to higher order semimet-
als [39–41], superconductivity [42–48], spin liquids [49] and
symmetry-protected-topological phases [50, 51]. Theoretical
tools developed therein, such as the static Wannier centers,
are based on the eigenstates of Hamiltonians and therefore are
intrinsically constrained to static situations. Thus, it is of in-
terest to consider how to introduce the notion of anomalous
Floquet phases with time-dependent topology into the realm
of HOTIs, and to develop suitable theoretical frameworks to
capture their higher-order time-dependent topology.

Breakthroughs on such an issue started from late 2018 [52–
55], and have been further developed in the past several years.
We would discuss three approaches for computing anomalous
Floquet higher-order invariant in this review.

1. Dynamical polarization theory [52, 56]. Such an ap-
proach generalizes the concept of static higher-order
polarization theory into an intrinsically time-dependent
situation. Specifically, the static polarization can be
characterized by the spatial interference patterns for oc-
cupied bands’ Bloch waves in different sublattices. In
contrast, the dynamical polarization at time t0 ∈ [0,T ]
is formed by the temporal interference pattern for Bloch
waves at two different instants t = 0 and t = t0. In terms
of the physical pictures, static polarization character-
izes the static centers of collective Wannier functions.
Contrarily, the dynamical polarization describes the rel-
ative positions of particles evolving from t = 0 to t = t0
among different unit cells.

2. Dynamical singularity methods [57–59]. This ap-
proach generalizes the previous discussion for first-
order anomalous Floquet topology into the higher-order
setting. Specifically, the evolution operator depends
on quasimomenta k and time t ∈ [0,T ]. They form
a (d + 1) dimensional parameter space for a spatially
d-dimensional system. For topologically nontrivial sys-
tems, their spectrum could exhibit gapless points at cer-
tain (k, t), dubbed dynamical singularities, each carry-
ing a nontrivial Berry charge like a Weyl point. The dif-

ference between first and higher-order cases is that the
latter situation would involve multiple dynamical singu-
larities which may be prevented to annihilate each other
by crystalline and/or onsite symmetries.

3. Crystalline symmetry graded invariants [54, 55, 60].
Consider for instance a mirror symmetry Mxy mapping
quasimomentum kx ↔ ky. Then, Mxy(k) = k defines
an invariant space kx = ky with dimensionality reduced
by one compared with the dimension of the original
Brillouin zone. In such a reduced invariant Brillouin
zone, one could then compute certain mirror-graded
anomalous Floquet topological invariants to describe
the higher-order topology. This approach shares cer-
tain similarity with earlier development of (the first or-
der) crystalline topological insulators, see i.e. Ref [61].
In particular, for mirror symmetries, due to the Bril-
louin zone dimension reductions by 1, the second or-
der topological insulators in (d + 1) spatial dimensions
exhibit the same classifications as d-dimensional first
order topological insulators [55, 60].

The above approaches have been discussed separately in dif-
ferent works. They all capture certain aspects of the anoma-
lous Floquet higher-order topology. However, it is important
to note that they are not equivalent to each other. Certain sys-
tems may show one type of dynamical topology but not the
other. One major task of this review is to compare and contrast
different approaches in a unified setting in order to highlight
their different physical implications — see Sec. V.

Now, we review the Floquet formalism that will be ex-
ploited throughout later discussions. The evolution operator
Û(t) for a time-dependent Hamiltonian Ĥ(t) reads

Û(t) = Pτ exp
(
(−i/~)

∫ t

0
dτ Ĥ(τ)

)
, (1)

where Pτ denotes time-ordering. For a periodically driven
(Floquet) system Ĥ(t + T ) = Ĥ(t), the Floquet operator cor-
responds to the evolution operator at period ends ÛF = Û(T ),
which is a time-independent operator. The eigenvalues Eα for

ÛF |Eα〉 = eiEα |Eα〉 (2)

denotes the quasi-energy which are defined modulo 2π. Here
Eα and the eigenstates |Eα〉 do not explicitly carry the depen-
dence on time, and could be treated as Floquet quasienergy
bands analogous to static Hamiltonian bands. Aside from the
ÛF describing physics at period ends, the evolution operator
Û(t) also contains the information of “micromotions” for evo-
lutions within each period. It is then useful to decompose Û(t)
in the following fashion:

Û(t) = Ûε(t)[ÛF]t/T
ε . (3)

Here, we take the t/T root for the eigenvalues of the Floquet
operator ÛF .

[ÛF]t/T
ε =

∑
α

|Eα〉
(
eiEα

)t/T

ε
〈Eα|. (4)
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The subscript ε denote the branch cut when taking roots for
complex numbers eiEα . For instance, let eiEα = −i, then
(eiEα )t/T

ε=0 = ei(3π/2)(t/T ), while (eiEα )t/T
ε=π = ei(−π/2)(t/T ). At period

ends t = T they both converge to the same eiEα , but different
ε would give distinct [ÛF]t/T

ε during t ∈ (0,T ). Finally, the
micromotions for dynamics within a period is factored into
Ûε(t + T ) = Ûε(t) after Û(t) and [ÛF]t/T

ε are given. In some
sense, this is a time-domain Bloch theorem analogous to the
spatial one, where the temporal translation symmetry gives
rise to an accumulative part [ÛF]t/T

ε and also a periodic part
Ûε(t).

In this review, we would chiefly focus on the time-
dependent part prescribed by Ûε(t). In comparison, [UF]t/T

ε

simply gives a linear expansion for quasienergy spectrum
in Eq. (4), while the eigenstates |Eα〉 are time-independent.
Therefore, [UF]t/T

ε carries the same information as the time-
independent Floquet operator ÛF that can be described by
conventional band theories for a static Hamiltonian.

The remaining part of this review is organized as follows.
In Sec. II we discuss a model serving as a unified platform
to test various topological invariants computed later on. In
Sec. III and IV we would introduce two types of approaches
characterizing the real-space edge topology (dynamical polar-
ization) and reduced Brillouin zone topology (dynamical sin-
gularity and crystalline symmetry graded invariants) respec-
tively. Their differences will be contrasted in Sec. V. Finally
we conclude with a discussion of current progresses on this
field in Sec. VI.

II. EXEMPLARY MODEL AND ITS FEATURES

For conciseness and also to compare different approaches
in a unified setting, we will use the same model in Ref. [52]
throughout this review, with a minor extension in Sec. V. The
periodically driven Hamiltonian Ĥ(t + T ) = Ĥ(t) switches
between two settings within each period T , where Ĥ(t) =∑

kmn ĉ†km|0〉[H(k, t)]mn〈0|ĉkn, and the matrix H(k, t) reads

H(k, t) =


γ′h1, t ∈ [0,T/4];
λ′h2k, t ∈ (T/4, 3T/4];
γ′h1, t ∈ (3T/4,T ]

,

h1 = τ1σ0 − τ2σ2

h2k = cos kxτ1σ0 − sin kxτ2σ3 − cos kyτ2σ2 − sin kyτ2σ1.
(5)

Throughout this paper, we would use Latin letters m, n to
denote sublattices, while Greek letters α, β are reserved for
band/branch indices. τ1,2,3, σ1,2,3 are Pauli matrices spanning
the basis for 4 sublattices (ĉk1, ĉk2, ĉk3, ĉk4)T , and τ0, σ0 are 2
by 2 identify matrices. Here γ′, λ′ are hopping constants. The
system is controlled by two independent dimensionless num-
bers (γ, λ) ≡ (γ′T/2~, λ′T/2~), and all energy (or time) carry
units 2~/T (or T/2).

Note that the time origin in Eq. (5) is shifted to make it
transparent H(k, t) = H(k,−t). This is chiefly to make it clear
that the model satisfies time-reversal as well as chiral symme-
tries. But one should note that the model is only made of two

driving steps. For certain analysis that does not require a chi-
ral symmetry, such as the dynamical polarization construction
in the next section, it is unnecessary to perform such a shift.
Here we stick to this artificial three-step formalism so as to
compare different approaches consistently.
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2

1

(b) λh2k

FIG. 1. Figures taken from Ref. [52] for the model in Eq. (5).
Solid/Dashed lines denotes +/− sign for the hopping amplitude so
each plaquette carries π-fluxes.

To pave the way for later discussions of anomalous Floquet
physics, we first focus on the Floquet operator at period ends

ÛF =
∑
kmn

ĉ†km|0〉[U(k,T )]mn〈0|ĉkn (6)

to understand the features of this model. Under periodic
boundary conditions, one can analytically obtain the spec-
trum as ±Ek with each band doubly degenerate, and Ek =

arccos
[
cos(
√

2γ) cos(
√

2λ) − cos kx+cos ky

2 sin(
√

2γ) sin(
√

2λ)
]
.

Then, the bulk gap closing condition Ek = 0 gives the phase
boundary

√
2λ = ±

√
2γ + nπ, n ∈ Z, (7)

as shown in Fig. 2 (a). Among the four distinct phases we
would be interested in the anomalous Floquet phase denoted
by 4©. Via an exact diagonalization of ÛF in real space under
open boundary conditions, we have the spectrum in Fig. 2 (c)
(left pannel). It is clear that there are in-gap corner modes in
both quasienergy 0 and π. As the Floquet band topological
invariants, such as the band polarization, describe the differ-
ence of corner mode numbers above and below certain bands,
the identical number of corner modes sandwiching each band
indicates a completely trivial static band topology.

To quickly verify it, one can directly take a special pa-
rameter point to analytically see the incapability of static
band topology to describe anomalous Floquet physics. Let
√

2(γ, λ) = (0.5, 1)π residing deep inside phase 4©, the Flo-
quet operator for Eq. (5) reduces to U(k,T ) = ih1/

√
2. We

see that here U(k,T ) and therefore its eigenstates do not even
depend on quasimomenta k. Since any topological invariants
necessarily involves a partial derivative with respect to kx, ky,
any static topological number must be trivial in such a case.
Numerical calculations for more generic parameters are also
presented in Fig. 2 (c) and (d). One can also directly compute
the band polarization in each phase to verify the vanishing of
static band topology for phase 4© [52]. Then, we are forced
to go beyond the static descriptions and seek for dynamical
characterizations of higher-order anomalous Floquet topology
as will be discussed in the following sections.
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FIG. 2. Figures taken from Ref. [52]. (a) Phase diagram pa-
rameterized by dimensionless (γ, λ) ≡ (γ′T/2~, λ′T/2~). (b) One
representative in-gap corner state amplitude in phase 4©, with oth-
ers in different corners. (c) – (d) Open-boundary spectrum (Lx ×

Ly = 20 × 20) in different phases. Parameters are
√

2(γ, λ) =

( π4 ,
π
2 ), ( π2 ,

π
4 ), ( 3π

4 ,
π
2 ), ( π2 ,

3π
4 ) for phases 1©∼ 4© respectively.

III. TOPOLOGY AT THE BOUNDARY

The dynamical polarization theory describes the co-
movement of particles along orthogonal directions, as
schematically depicted in Fig. 3. The first order polarization
±νx moves along ±x directions. Based on that, the second or-
der polarization serves as a co-movement along y in addition
to the movement of ±νx. Corner modes then results from ob-
structing the motions by open boundaries. As such, intuitively
it describes the dynamical topology of the real-space bound-
ary for the branches ±νx. Such a point will be verified further
in Sec. V. We also mention that the bulk polarization enforced
boundary topology shares similarity with static case of the so-
called boundary obstructed topological phases [62] described
by the static polarization theory.

A. Dynamical polarization theory

In the previous section, we have seen that in the anomalous
Floquet phases, all static polarization based on Floquet band

FIG. 3. Figure taken from Ref. [52]. Schematic illustration of
dynamical polarization.

wave functions becomes trivial despite the existence of robust
corner modes. Now, we review the construction of dynami-
cal polarization for the “anomalous” part Ûε(t) in Eq. (3). As
Ûε(0) = Ûε(T ) are trivially identity operators, and that Ûε(t)
can be gapless at any instants (see examples in the next sec-
tion for dynamical singularity), it is not meaningful to discuss
“band polarization” for such an operator. Instead, one needs
to consider the evolution for particle polarization throughout a
period. The Resta’s position operator [63] satisfying periodic
boundary condition reads

x̂ =
∑
im

ĉ†im|0〉e
−i 2π

Lx
xi〈0|ĉim =

∑
k,m

ĉ†
k+ 2π

Lx
ex,m
|0〉〈0|ĉkm, (8)

ĉim =
1
√

Lx

∑
k

e−ik·ri ĉkm, ri = (xi, yi) (9)

where Lx means unit cell numbers along x-direction, and the
unit cell indices xi = 0, 1, . . . , (Lx − 1). Now that we are inter-
ested in the evolution of polarization, it may be reasonable to
start from

x̂(t) = Û†ε (t)x̂Ûε(t). (10)

However, such an operator describing a single moment
amounts to simply reshuffling the unit-cell labels, and the
eigenvalues of x̂(t) are identical to those for the bare posi-
tion operator x̂ [52]. Instead, a meaningful approach should
compare the relative motions between two instants via the fol-
lowing dynamical mean polarization operator

x̂mean(t) =
x̂(0) + x̂(t)

2
. (11)

Here, we would demonstrate what it describes physically
through a toy example, and list the practical procedures
to compute arbitrarily higher-order dynamical polarization
through x̂mean(t).

An idealized scenario is shown in Fig. 4, where the anoma-
lous evolution takes any site to its neighboring unit cell xi+1 =

xi +1 as Ûε(t0) =
∑

im ĉ†i+1,m|0〉〈0|ĉim. If we only check a single
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FIG. 4. Toy scenario showing the need for x̂mean(t).

moment at t0, we have

x̂(t0) =
∑
im

ĉ†(i−1),m|0〉e
−i 2π

Lx
xi〈0|ĉ(i−1),m

=
∑
im

ĉ†i,m|0〉e
−i 2π

Lx
(xi+1)
〈0|ĉi,m (12)

However, the seeming change from xi → (xi + 1) in the expo-
nential part of Eq. (12) can be canceled by a unit-cell relabel-
ing i→ i+1, as shown in Fig. 4. Then, x̂ and x̂(t) hosts exactly
the same set of eigenvalues ei 2π

Lx
xi , xi = 0, 1, . . . , Lx − 1, and

therefore cannot capture any dynamical information. In con-
trast, if one adopt x̂mean(t) in Eq. (11), by combining Eqs. (8)
and (12) we have

x̂mean(t0) =
∑
im

ĉ†im|0〉
ei 2π

Lx
xi + ei 2π

Lx
(xi+1)

2
〈0|ĉim (13)

=
∑
im

ĉ†im|0〉e
−i∆x(xi+1/2) cos(π/Lx)〈0|ĉim. (14)

We see that the eigenvalues of x̂mean(t) exhibits a shift in the
exponential part from xi → (xi +1/2) compared with x̂, which
cannot be removed by any unit-cell relabeling. Importantly,
the shift ν = 1/2 characterize a movement by 2ν from t = 0
to t = t0, instead of Wannier function centers as for the static
polarization. Finally, it can be proved that the eigenvalues of
x̂mean(t) converges to a unitary phase factor as O(1/L2

x) when
Lx → ∞ for a generic Ûε(t) [52].

Next, we outline the procedure to apply x̂mean(t) to obtain
dynamical higher-order polarization in the thermodynamic
limit Lx, Ly → ∞.

1. The first order polarization can be obtained by comput-
ing the dynamical Wilson loop Wx,k(t):

x̂Lx
mean(t) =

∑
kmn

ĉ†km|0〉[Wx,k(t)]mn〈0|ĉkn

Wx,k(t) = Pk′x e
− 1

2

∫ k+2πex
k dk′xU†ε (k′,t)∂k′x

Uε(k′,t), (15)

Then, the first order dynamical branches µ characteriz-
ing movement of particles along x can be obtained by
diagonalizing the dynamical Wilson loop,∑

n

[Wx,k(t)]mn[νx,µ(k, t)]n = e−2πiνx,µ(kl,x,t)[νx,µ(k, t)]m, (16)

|bx,µ(xi, kl,x, t)〉 =
1
√

Lx

∑
kx,m

ĉ†km|0〉e
ikx xi [νx,µ(k, t)]m. (17)

One can verify that

x̂mean(t)|bx,µ(xi, kl,x, t)〉 = e−i 2π
Lx

(xi+νx,µ(kl,x,t))|bx,µ(xi, kl,x, t)〉,
(18)

where νx,µ(kl,x, t) characterizes the movement of parti-
cles from time 0 to t by 2νx,µ(kl,x, t) along x, away from
the unit-cell positions xi.

2. The second order polarization along the orthogonal di-
rection y can be constructed by first projecting the
ŷmean(t) = onto the first order branches. To do so, we
group the first order branches µ’s into several separable
sets νx. Two branches µ1, µ2 in different sets should be
completely separable νx,µ1 (kl,xt) , νx,µ2 (kl,x, t) for all
kl,x, t. Then,

ŷ(νx)
mean(t) = P̂νx

ŷ(t) + ŷ(0)
2

P̂νx , (19)

P̂νx =
∑

xi,kl,x;µ∈νx

|bx,µ(xi, kl,x, t)〉〈bx,µ(xi, kl,x, t)| (20)

Then, one can perform the same procedure as the first
order dynamical polarization,(

ŷ(νx)
mean(t)

)Ly
=

∑
k,µ1µ2∈νx

b̂†kµ1
(t)|0〉[W (νx)

y,k ]µ1µ2〈0|b̂kµ2 (21)

b̂†kµ(t) =
∑

m

ĉ†km[νx,µ(k, t)]m, (22)∑
µ2

[W (νx)
y,k (t)]µ1µ2 [νy,µ̃(k)]µ2 = e2πiν(νx )

y,µ̃ (kl,y,t)[ν(νx)
y,µ̃ (k, t)]µ1 , (23)

and obtain the second order dynamical branches µ̃’s. If
we limit our discussions to the second order polariza-
tion, the quadrupolar motions are then

〈ν(νx)
y,µ̃ 〉(t) =

∫ π

−π

dkx

2π
ν(νx)

y,µ̃ (kx, t). (24)

3. For even higher order polarization, such a procedure
can be directly generalized. For instance, a third or-
der polarization would involve projecting ẑmean(t) onto
a set of second-order dynamical branches similar to
Eqs. (17), (19) and (20). Its associated dynamical Wil-
son loop with give rise to the third order branches, so on
and so forth. One can check Ref. [56] for the example
of calculating the third order dynamical polarization for
an eight-band higher-order topological superconductor.

B. Numerical results

In practical calculations, usually the analytical form of
Ûε(t) cannot be easily accessed, and one has to perform nu-
merical calculations for a finite-size lattice of size Lx × Ly ×

Lz × . . . . Here, we give the corresponding formulae for such
a finite size sample for reference. The starting point is the
matrix Uε(k, t) for the anomalous part of evolution operators
Ûε(t) =

∑
kmn ĉ†km|0〉[Uε(k, t)]mn〈0|ĉkn. The Brillouin zone is

discretized into steps of ∆x,y = 2π/Lx,y along kx or ky Then,

1. The first order dynamical Wilson loop

Qx,k(t) =
I + U†ε (k + ∆xex, t)U

†
ε (k, t)

2
, (25)

Wx,k(t) = Qx,k+(Lx−1)∆xex (t) . . .Qx,k+∆xex (t)Qx,k(t) (26)
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Its eigenvalues and eigenstates are obtained as∑
n

[Wx,k(t)]mn[νx,µ(k, t)]n = e2πiνx,µ(kl,x,t)[νx,µ(k, t)]m (27)

Note that the matrix Wx,k(t) has the same dimension as
the number of sublattices.

2. The second order results are

[Q(νx)
y,k (t)]µ1µ2 =

∑
m1m2

[νx,µ1 (k + ∆yey, t)]∗m1

×

 I + U†ε (k + ∆yey, t)Uε(k, t)
2


m1m2

[νx,µ2 (k, t)]m2 , (28)

W (νx)
y,k (t) = Q(νx)

y,k+(Ly−1)∆yey
(t) . . . Q(νx)

y,k+∆yey
(t) Q(νx)

y,k (t) (29)

Here, µ1, µ2 ∈ νx belongs to the same set of first order
branches whose νx,µ1 (kl,x, t) = νx,µ2 (kl,x, t) intersect at
certain kl,x, t. Therefore, the dimension of W (νx)

y,k (t) is
generally smaller than the number of sublattice. Simi-
lar to the first order case, we diagonalize the dynamical
Wilson loop at each instant∑

µ2

[W (νx)
y,k ]µ1µ2 [ν(νx)

y,µ̃ (k, t)]µ2 = e2πiν(νx )
y,µ̃ (kl,x,t)[ν(νx)

y,µ̃ (k, t)]µ1 . (30)

3. If even higher-order polarization is needed, we simply
repeat the calculation in Eqs. (28) – (30) for polarization
along additional orthogonal directions until one can no
longer separate the branches into completely separable
sets. Here for conciseness we would stop at the second
order. Then, the last step is to compute the averaged
dynamical polarization

〈ν(νx)
y,µ̃ 〉(t) =

1
Ly

∑
kl,x

ν(νx)
y,µ̃ (kl,x, t) (31)

Now, we test the above algorithm against the model shown
in Fig. 1. Due to the two mirror symmetries

MxUε(kx, ky, t)M−1
x = Uε(−kx, ky, t),

MyUε(kx, ky, t)M−1
y = Uε(kx,−ky, t), (32)

Mx = τ1σ3, My = τ1σ1, (33)

the structure of various dynamical branches are constrained.
There are four sublattice in the system, and therefore we have
4 first order dynamical branches νx,µ(ky, t), µ = 1, 2, 3, 4 as in
Eq. (27) with respect to each ε lying in a certain gap (ε = 0 or
ε = π). These branches separate into two sets ±νx. Each set
contains two degenerate branches, giving rise to two second
order dynamical polarization branches. Take the set +νx for
instance, the second order averaged dynamical polarization is
shown in Fig. 5 (b) for the four phases in Fig. 2 (a). For the
gap with corner modes, we have the associated 〈ν(+νx)

y,µ̃ 〉(t) go-
ing from 0 to 1 (or vice versa) from t = 0 to t = T . The two
branches cross at 0.5, signaling that all particles move to their
nearby unit cell along y near the edge of xi = Lx−1. Then, the

ϵ=0 gap
+νx
-νx

ky0

0.5

1
νx,μ

ϵ=π gap
+νx

-νx

-π 0 π
ky0

0.5

1

(a) First order dynamical branches at t = T/2.

� 0-gap

π-gap

T/2 T

0.5

1

〈ν
y,μ

∼
(+νx)〉

� 0-gap

π-gap

T/2 T

〈ν
y,μ

∼
(+νx)〉

� 0-gap

π-gap

T/2 T

〈ν
y,μ

∼
(+νx)〉

� 0-gap

π-gap

T/2 T
t

〈ν
y,μ

∼
(+νx)〉

(b) Second order averaged dynamical polarization

FIG. 5. Figures taken from Ref. [52]. (a) Exemplary first-
order dynamical branches νx,µ(ky, t) in phase 4© at t = T/2. Four
branches for each ε-gap separate into two doubly degenerate sets
±νx. Other phases/instants t exhibit νx,µ(ky, t) of similar structures.
(b)–(e) Quadrupolar motions 〈ν(νx)

y,µ̃ 〉(t) in a cycle, with the same pa-
rameters as in Fig. 2 for each phase respectively. Generically the
1/2 crossing needs not to occur at t = T/2 if the chiral symmetry is
broken.

open boundary serves as an obstruction for motion and lead to
a localized corner mode near xi = Lx − 1, yi = 0, Ly − 1. Sim-
ilarly physics happens for the −νx first order branches giving
rise to another two corner modes around xi = 0. Comparing
Fig. 5 (b) with Fig. 2 (c) (d), we see a one-to-one correspon-
dence between non-trivial dynamical polarization in each gap
and the existence of corner states therein.

IV. TOPOLOGY OF THE REDUCED BRILLOUIN ZONE

In this section, we review two alternative ways to character-
ize the anomalous Floquet higher-order topology. They both
describe the stable topological properties of certain special re-
gions in the Brillouin zone, typically one or more dimensional
lower than the original Brillouin zone.
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A. Dynamical singularity (DS)

As mentioned in the introduction, dynamical singular-
ity refers to the gapless points for the spectrum of peri-
odized evolution operator Uε(k, t) over the extended param-
eter space (k, t). For instance, in two spatial dimensions, the
3-dimensional parameter space (kx, ky, t) could support vari-
ous types of Weyl or Dirac points. Specifically, one could
obtain the instantaneous spectrum

Uε(k, t)|un(k, t)〉 = eiun(k,t)|un(k, t)〉. (34)

Note that un(k, t) is not the Floquet spectrum for
U(k,T )|En,k〉 = eiEn,k |En,k〉 but just a theoretical tool to
analyze topology. Suppose En,k exhibits two gaps at 0 and
π. Then, the gapless point (k0, t0) for instant phase band
to touch each other un1 (k0, t0) = un2 (k0, t0) = 0 and/or π is
called a dynamical singularity. One could further compute its
charge through Berry fluxes, similar to the Weyl semimetal
cases. To do so, consider a closed parameter surface
S ∈ {k ∈ 1st Brillouin zone, t ∈ (0,T )} enclosing (k0, t0),
and the associated Chern number designates the singularity
charge

Q = C =

∫
Σ

dS
2πi
· (∇ × 〈un(k, t)|∇|un(k, t)〉) (35)

Multiple Weyl points with opposite charges may merge into
the same point (k0, t0) and form a charge-neutral Dirac point.
Both Weyl and Dirac points mentioned above are all dubbed
the dynamical singularities.

Compared with the first order anomalous Floquet insula-
tors, the presence of crystalline symmetries in FHOTI typi-
cally will result in multiple DS’s related by symmetry. It is
then the subject of this section to analyze the stability of DS
in such scenario, and to apply this method to the model in
Fig. 1 for illustrations.

Consider a certain crystalline symmetry denoted by A, such
as rotations or mirror reflections. Generically, under the oper-
ation of A, a crystalline momentum will be mapped to a dif-
ferent one A(k) = k′. Then, one could define the reduced
Brillouin zone by the condition {k|A(k) = k}, which is typi-
cally the rotation axis or the mirror reflection plane in the full
Brillouin zone.

So far, there have been two approaches depending on
whether the DS locate inside the reduced Brillouin zone
(1) DS away from reduced Brillouin zone

In this case, the only effect of a certain crystalline sym-
metry A is to allocate the relative positions of DS’s. For in-
stance, if a DS exists at (k0, t0), the others would be fixed at
(A(k0), t0), (A2(k0), t0) etc. The stability of these DS’s would
rely on a mechanism similar to the Weyl physics: as long as
translation symmetry is preserved (no mixing of different mo-
menta k), the DS cannot be gapped out until the perturbation is
strong enough to merge two DS’s of opposite charges. A nat-
ural requirement is then that the DS’s are Weyl points rather
than Dirac points, as the latter can be generically gapped out
by themselves. Consequently, the system should not pre-
served both time-reversal symmetry and inversion symmetry,

for otherwise the Berry curvature vanishes [64] implying that
only Dirac points but not Weyl points could exist. An exam-
ple exploiting mirror symmetries is shown in Ref. [57]. There,
the locations of DS’s exhibit a quadruplet pattern at (±kx,±ky)
on certain planes of fixed t0. The topological invariant is then
defined as the total Weyl charge within, i.e. the first quadrant
of the first Brillouin zone.

It is helpful to stress in what sense does it mean by topology
here. Note that the Weyl physics for Uε(k, t) applied here only
serves as a theoretical tool — the spectrum of Floquet oper-
ators U(k,T ) is fully gapped. In other words, physically we
are investigating an insulator, not a semimetal. Typically one
would define a stable topology for insulators if the topological
number remains unchanged as long as

1. The bulk gap of U(k,T ) remains open;

2. The system preserves the original symmetry when
smoothly deformed.

Generically, according to the Weyl physics picture, one could
smoothly deform Uε(k, t) such that all Weyl points converge
to the same point within reduced Brillouin zone at a certain
t ∈ (0,T ); such an operation does not violate the underlying
symmetry, and does not require a bulk gap closure for U(k,T ).
Since multiple Weyl points come to the same point and form a
degenerate Dirac point, they could surely be gapped out. That
means one could smoothly deform the system to gap out the
DS’s without closing bulk gaps for U(k,T ). Therefore, topo-
logical numbers defined in this way does not correspond to
those in insulators. Rather, it should be understood in terms
of microscopic models similar to the case of Weyl semimetals:
suppose we have a specific model with a given set of param-
eters that give rise to DS’s with a nontrivial invariant. Then,
it is robust against parametrically small perturbations which
does not merge Weyl points for the spectrum of Uε(k, t).
(2) DS within reduced Brillouin zone

Based on the above discussion, it is also worth exploring
whether additional protections can be provided such that DS’s
cannot be gapped out even if they are merged to the same point
in the Brillouin zone. Such a possibility is recently explored
in a series of works in two spatial dimensions for chiral [58]
and particle-hole [59] symmetric systems. The idea is to en-
dow DS (of either Weyl or Dirac type) additional quantum
numbers so that DS’s with different conserved quantum num-
bers are forbidden to hybridize with and gap out each other.
To make our discussions concise and also connected with the
next subsection, we would focus on the simpler case of mirror
crystalline symmetry. Classifications by rotation and dihedral
symmetries can be found in Ref. [58, 59].

We use two symmetries to illustrate the physics here. First,
consider a mirror symmetry with mirror reflection plane along
the diagonal direction, i.e. connecting sublattices 1 and 3 in
Fig. 1. That corresponds to the operator

Mxy =

(
σ3, 0
0 σ1

)
, MxyUε(kx, ky, t)M−1

xy = Uε(ky, kx, t).

(36)
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Further, we require the system to host chiral symmetry, and
focus on the π-gap in the following [3],

S = τ3σ0, S Uε=π(k, t)S −1 = Uε=π(k,T − t)e4πit/T . (37)

The relation MxyS M−1
xy = +S means such a set of symmetry

hosts Z classification for each gap of U(k,T ) [2, 32]. (Note
that the classification in [55] is referring to time-glide, not just
a mirror symmetry, and therefore different from our current
discussions).

Now, since we are interested in the stability of different
DS’s when they are merged together, it is enough to con-
sider the high symmetry points, namely, the mirror plane
kx = ky ≡ k and the half-period point t = T/2. Denote
Ũ(k) ≡ Uε=π(kx = ky = k,T/2), the two symmetries are then
reduced to commutation relations

[Mxy, Ũ(k)] = 0, [S , Ũ(k)] = 0. (38)

That means we can simultaneously denote the eigenstates with
quantum numbers

Ũ(k)|mxy, s, ũn(k)〉 = eiũn(k)|mxy, s, ũn(k)〉,
Mxy|mxy, s, ũn(k)〉 = mxy|mxy, s, ũn(k)〉,
S |mxy, s, ũn(k)〉 = s|mxy, s, ũn(k)〉 (39)

where s = ±1,mxy = ±1. Since Ũ(k) in Fig. 1 is a four-
dimensional matrix, the two quantum numbers (s,mxy) com-
pletely diagonalize the phase band space at each k. Therefore,
in the basis of Eq. (39) a Weyl point can be expanded into a
diagonal form, i.e.

Ũ(k) = eiπ

I + i


αp 0 0 0
0 −αp 0 0
0 0 βp′ 0
0 0 0 −βp′


 + O(p2, (p′)2) (40)

where p = (k − k0) (p′ = k − k′0) and DS’s locate at k0, k′0.
Parameters α, β depend on microscopic details. The four di-
agonal elements reside on orthogonal subspace labeled by dif-
ferent s,mxy, and therefore there is no off-diagonal elements
allowed to hybridize and gap out them.

To verify, we start from the original basis in Eq. (5) and take
for instance

√
2(γ, λ) = π(0.5, 1) where corner states show up

in both gaps. Then, a straightforward calculation gives

Ũ(k) = − cos(k)τ0σ0 + i sin(k)
(
−σ3 0

0 σ1

)
, (41)

which has the same set of eigen-structure as Mxy in Eq. (36).
The DS’s of π-gap here feature a four-fold degenerate Dirac
point at k = 0, and it is straightforward to expand Ũ(k) to
linear order in the eigen-basis of Mxy into the form of Eq. (40)
with α = β = 1. Note also that the upper-left (or lower-right)
block corresponds to s = ±1 for chiral symmetry.

Finally, we give a numerical result for more generic pa-
rameters across the phase diagram in Fig. 2 (a), which we re-
produce in Fig. 6 (a). To loop over all the four phases, we
consider a parameter contour as explained in Fig. 6 (a) param-
eterized by g ∈ [0, 4], where g = 0.5, 1.5, 2.5, 3.5 are points

0

trivial

π

0&π

0 2 γ π
0

2 λ

π

Contour
√

2
π

(γ, λ) =
(0.5 − g

4 , 0.75 − g
4 ), 0 ≤ g < 1

(0.25 +
g−1

4 , 0.5 − g−1
4 ), 1 ≤ g < 2

(0.5 +
g−2

4 , 0.25 +
g−2

4 ), 2 ≤ g < 3
(0.75 − g−3

4 , 0.5 +
g−3

4 ), 3 ≤ g < 4

(a) Parameters γ, λ in the phase diagram.

0 2 4 6

(b) Size of π-gap for the full evolution operator U(k, t)

(c) Size of π-gap for the periodized evolution operator Uε=π(k, t).
The discontinuity is due to the loss of definition for the branch cut
ε of [U(k,T )](t/T )

ε=π (Eq. (4)) when the π-gap closes. Spectrum for
three parameter points (denoted by •, N and � is presented in

Fig. 7)

FIG. 6. Dynamical singularity when the parameters γ, λ in the model
of Fig. 1 takes various values in the phase diagram. (a) Parametriza-
tion for different values of γ, λ, where the contour across all 4 phases
is parametrized by g. (b) The size of π-gap for U(k, t), where we see
that the phase transition is associated with destroying or creating a
dynamical singularity at t = T . (c) The size of π-gap for the peri-
odized Uε=π(k, t). Due to chiral symmetry for Uε=π, the dynamical
singularity always occur at t = T/2. In (b) and (c), the red-color (for
vanishing π-gap) marks the instants where dynamical singularities
exist. (d) Representative spectrum at t = T/2 for three g values.

at the phase transitions. To illustrate possible dynamical sin-
gularities, we compute the π-gap size for the full evolution
operator U(k, t) (Fig. 6 (b)) and the periodized evolution op-
erator Uε=π(k, t) (Fig. 6 (c)). At each instant t, the gap size is
the smallest value ∆π = min({E1(k, t) − E2(k, t)|∀k}) between
the two sets of bands E1, E2 ∈ [0, 2π] over the whole Bril-
louin zone. Then, ∆π = 0 denotes dynamical singularity for
the π-gap.

From Fig. 6 (b), we confirm that dynamical singularities
exist for g < 0.5 and g > 2.5, corresponding to phases 4© and
3© in Fig. 2 (a) as expected. Note that the stable ∆π = 0 here
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can only be created or annihilated by moving them towards
the period ends t = T , namely, by a bulk gap closure for the
Floquet operator U(k,T ). It is worth noting that the Floquet
bulk gap closure and reopening through a continuous change
of parameter was exploited to detect dynamical singularities
in a recent cold atom experiment [65, 66].

Similarly, we see in Fig. 6 (c) that dynamical singulari-
ties show up within the same parameter range for the peri-
odized Uε=π(k, t). Due to the rescaling with [U(k,T )]−t/T

ε=π (see
Eq. (3)), dynamical singularities all locate at t = T/2 for such
a chiral-symmetric system. Also, because U(k,T ) becomes
gapless (for the π-gap) at the phase transitions, the branch cut
ε = π becomes ill-defined right at the phase transition point,
and therefore a sharp discontinuity is observed in Fig. 6 at
g = 0.5, 1.5. For concreteness, for the three representative pa-
rameter points denoted as •, N and � in Fig. 6 (c), we also
plot the instantaneous phase band dispersions in Fig. 7, where
the band touching point at k = 0 is clearly seen in (a) and
(c). In all cases, the dynamical singularity here is a four-fold
degenerate Dirac point.

B. Crystalline symmetry graded invariants

From the previous discussions, we see that a stable dynam-
ical singularity protected by the bulk gap of Floquet operators
U(k,T ) would require examinations of the reduced Brillouin
zone defined by i.e. Mxy(k) = k. Such an operation reduces
the dimension of k-space by 1. If we constrain ourselves to
the second-order topological insulator/superconductors, there
is a straightforward way to capture the second-order indices
by applying a first-order-like (mirror-graded) index in the re-
duced Brillouin zone. This approach actually originates from
the earlier studies of (static) topological crystalline insula-
tors [61]. It has been applied in a number of scenarios in-
cluding static and anomalous Floquet insulators of higher-
orders [32, 55, 60, 67, 68].

Let us illustrate the method through the model in Fig. 1 us-
ing still the two symmetries, Mxy, S , as in Eqs. (36) and (37).
For a chiral symmetric system, at t = T/2, the anomalous evo-
lution operator takes diagonal/off-diagonal form depending on
which gap we check [2, 3],

Uε=0(k,
T
2

) =

(
0 q̃
q 0

)
, Uε=π(k,

T
2

) =

(
q 0
0 q̃

)
. (42)

For instance, Eq. (41) gives

Uε=π(k,
T
2

) = Ũ(k) = −

(
eikσ3 0

0 e−ikσ1

)
⇒ q = −eikσ1 . (43)

Further, the mirror symmetry Mxy in Eq. (36) has eigen-basis

|m(+)
xy (α, β)〉 =


α
0

β/
√

2
β/
√

2

 , |m(−)
xy (α, β)〉 =


0
α

β/
√

2
−β/
√

2

 , (44)

for eigenvalues ±1 respectively. Here α (or β) is for the pro-
jection into chiral symmetry sector s = +1 (or s = −1), and

(a) Parameter • in Fig. 6 (c) with g = 0.25 in Fig. 6 (a)

(b) ParameterN in Fig. 6 (c) with g = 1.5 in Fig. 6 (a)

(c) Parameter� in Fig. 6 (c) with g = 3.5 in Fig. 6 (a)

FIG. 7. Representative instant spectrum for three points in Fig. 6(c).
Each band is doubly degenerate.

|α|2 + |β|2 = 1. Consider the chiral sector +1 corresponding to
q in Eq. (43), we have the mirror symmetry sector projections
as

q± = 〈m(±)
xy (1, 0)|Ũ(k)|m(±)

xy (1, 0)〉 = −e±ik. (45)

Finally, the topological invariant is defined as the mirror-
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1 2 3 4
g

-1

0

1

ν

0-gap π-gap

FIG. 8. The mirror graded winding numbers within the reduced Bril-
louin zone defined by Mxy(k) = k.

graded winding number in the IRBZ,

ν =
νmxy=+1 − νmxy=−1

2

=

∫ √
2π

−
√

2π

dk

2
√

2πi

q∗+∂kq+ − q∗−∂kq−
2

= +1. (46)

This predicts the existence of π-mode at the edges of the mir-
ror plane. Similarly, for the 0-gap, one can perform the pro-

jection q± = 〈m(±)
xy (0, 1)|q|m(±)

xy (1, 0)〉 and compute the invari-
ant. Finally, we present in Fig. 8 a numerical calculation for
the mirror-graded winding number, along the parameter con-
tour shown in Fig. 6 (a). Again, we find that such a mirror
graded winding number precise prescribes the existence of
corner modes in both 0 and π gap, and the results for π-gap
coincide with Fig. 6 (b) (c).

V. COMPARISON OF DIFFERENT METHODS

In the previous sections, we discussed two classes of topo-
logical invariants. Their major differences are summarized in
Table I. We have briefly stressed that the dynamical polariza-
tion describes the topology of real-space boundaries, while the
dynamical singularity and crystalline-symmetry-graded topo-
logical invariants both concern the topology within the re-
duced Brillouin zone. But in many models, such as that in
Fig. 1, these two types of topology may fairly coexist, mak-
ing their distinctions obscure. Therefore, we would further
demonstrate their difference in this section through a modi-
fied model on top of that in Fig. 1.

TABLE I. Comparison between different approaches to characterize anomalous Floquet higher-order topology

Dynamical polarization Dynamical singularity and crystalline
symmetry graded invariant

Topology concerning? Bulk enforced real space boundary High symmetry region in Brillouin zone

How to change invariant? Bulk or edge gap closure Must be bulk gap closure within symmetric
Brillouin zone

Specifically, we would change the Hamiltonian in Fig. 1 (a)
into

γh1 = γ(τ1σ0 − τ2σ2) → γxτ1σ0 − γyτ2σ2 (47)

That is, the hopping strength of h1 along x and y becomes dif-
ferent. Meanwhile, λh2k in Fig. 1 (b) is kept unchanged. Such
a modification still preserves the mirror symmetries along two
axes Mx,My, but breaks the diagonal mirror symmetry Mxy.
According to the analysis in Sec. III and IV, the dynamical po-
larization should still be quantized, while the dynamical sin-
gularity are no longer protected. Consequently, this should
yield in the following a class of robust corner state protected
only by edge topology.

For simplicity, we would focus only on the π-gap for illus-
trations. Therefore, it will be natural to start from the parame-
ters (γx, γy, λ) = (π/

√
2)(1, 1, 0.25) corresponding to phase 3©

in Fig. 2 (a) exhibiting π corner modes only. Then, we start
to decrease γx, and compare its effects on Floquet spectrum
(Fig. 9), dynamical polarization (Fig. 10), and dynamical sin-
gularity (Fig. 11).

We first confirm the existence and nature of corner states in
Fig. 9. Here, we numerically obtain the Floquet spectrum for
the same set of parameters but with different boundary con-
ditions. In Fig. 9 (a) with full periodic boundary condition,
we observe that upon decreasing γx away from the value of
γx = γy, no bulk gap closure occurs. In contrast, for a stripe
geometry with mixed open and periodic boundary conditions
in Fig. 9 (b), it is confirmed that an edge gap closure shows up
around γx ≈ 1.2. As such, for a lattice with full open bound-
ary in Fig. 9 (c), the π corner modes vanishes after the edge
gap reopens for γx < 1.2, signaling an edge topological phase
transition.

Next, we apply the two aforementioned methods to the ex-
tended model. For the dynamical polarization presented in
Fig. 10, we indeed see that the “crossing” at 0.5 occurs right
after the edge transition γx ≥ 1.2 indicated in Fig. 9 (b), pre-
cisely capturing the corner states induced by edge topology.
Contrarily, Fig. 11 shows that the dynamical singularity is
gapped out immediately when γx deviates from the value of
γy. Such a difference highlights the fact that when Mxy is bro-
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γx=1.2
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(a) Torus: Periodic boundary condition along both x, y

γx=1.2

-3 -2 -1 1 2 3
ky

2

π
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E

(b) Stripe: Periodic boundary condition along y, but open along x

γx=1.75

m-th eigenstate
-π

0

Em

π

(c) Square: Open boundary condition along both x, y

(d) Amplitudes of π-modes in (c)

FIG. 9. Quasienergy spectrum of the Floquet operator under dif-
ferent boundary conditions. Here (γy, λ) = (π/

√
2)(1, 0.25) is fixed.

Should γx = γy (green dashed line), it corresponds to phase 3© in
Fig. 2 (a) with π corner modes. Decreasing γx below γ(c)

x ≈ 1.2 de-
stroys these corner modes. (a) and (b) clearly show that an edge
(rather than bulk) topological phase transition occurs around γ(c)

x

where the edge π-gap closes while the bulk gap remains open.

ken, only edge topology remains. As a safety check, note
that Mx = τ1σ3,My = τ1σ1 both anticommute with the chi-
ral symmetry S = τ3σ0, and therefore Mx,My, S cannot be
simultaneously diagonalized and yield the basis analogous to
Eq. (39). That forbids possible protection of dynamical sin-
gularity by Mx,My too. In connection to the terminology in
static higher-order topological insulators, one could dub the
system in Fig. 9 – Fig. 11 where only edge topology exists as
“boundary obstructed topological phases” [62].

Finally, two caveats are in order.
First, although we use the phrase “edge topology”, the

physics described by dynamical polarization is not to be con-
fused with that in proximity effects (i.e. embedding an s-
wave superconductor onto the surface of a topological insu-
lator [69]). After all, the “edge” layer in Fig. 1 essentially
makes no difference from any other bulk layers, unlike the
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0.5

1

〈ν
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~
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(a) γx = 0.5
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(b) γx = 1.75

FIG. 10. DP for the extended model. We see that the corner states
in Fig. 9 (c) is characterized by DP across the edge topological phase
transition.

0 2 4 6

(a) π-gap size for the spectrum of Uε=π(k, t). The dynamical
singularity with vanishing π-gap size disappears immediately

when γx deviates from the value of γy

γy

0.5 1.0 1.5 2.0
γx

1
2
3
4

min(Δπ)

(a) π-gap size at t = T/2 (smallest among all t)

FIG. 11. Dynamical singularity for the extended model is immedi-
ately gapped out when the Mxy is broken by γx , γy, although corner
states still exist for certain ranges as shown by Fig. 9 (c).

superconductor which is completely different from the under-
lying insulator. Instead, edge topology here is enforced by the
bulk dynamical quadrupole. Physically, one can see the dif-
ference by noting that even if we remove the edge layer (i.e.
reduce unit cell number Ly to Ly − 1), the “new edge” would
still carry nontrivial topology enforced by the bulk dynamical
polarization and lead to corner states.

Second, it is helpful to note that the edge topology here
differs from the first-order “weak indices” for each layer
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independently [70]. Following the terminologies for static
cases [71], the topology characterized by dynamical polar-
ization is relevant to “extrinsic” AFHOTI, while dynamical
singularity and crystalline symmetry graded invariants are re-
lated to “intrinsic” AFHOTI. Meanwhile, within the category
of extrinsic AFHOTI, in order to observe corner/hinge modes
characterized by dynamical polarization, one only needs the
open boundaries to satisfy underlying bulk crystalline sym-
metries [32, 71]. This is because the boundary topology here
is enforced by the bulk multiple polarization. In contrast,
the weak topological indices will require special open bound-
aries depending on microscopic model details in order for the
boundary modes to exhibit reduced dimensionality [71]. In
other words, without fine-tuning of how to cut the boundary,
a two-dimensional first order weak insulator will generally
demonstrate a usual one-dimensional edge state induced sim-
ply by all the weak indices in each layer of the bulk.

VI. OUTLOOK

In this review, we give a pedagogical introduction to sev-
eral classes of methods to practically obtain the anomalous
Floquet higher-order topology, and compare their different
physical consequences. Connections to recent developments
in static systems are also stressed. Currently, the field of
AFHOTI is still at an early stage with rapid development in
multiple directions.

One topic that we have not reviewed in detail is the issue of
classifications. In addition to those based on dynamical sin-
gularity [58, 59], there have also been discussions based on
other methods as well. That includes the frequency domain
analysis of the edge theory [55] and a K theory classification
after mapping evolution operators into enlarged Hamiltonian
systems homotopically [2, 60]. In particular, a Floquet system
allows for a special class of nonsymmorphic spacetime sym-
metry, dubbed “spacetime crystals” [55, 60, 72, 73]. These
symmetries feature a combined crystalline symmetry opera-
tion and temporal translations by a fraction of period T . For
instance, the “time glide” (or “time screw”) involves a spa-
tial mirror reflection M (or n-fold rotation Cn) combined with
time translation by half a period, such as MxH(kx, ky, t)M−1

x =

H(−kx, ky, t + T/2). Therefore, unique symmetry classes and
their associated topological classification could emerge in a
strongly driven Floquet system.

Meanwhile, there have been connections between the
AFHOTI and several related topics in recent researches. For
instance, similar to the case for static symmetry indica-
tor [74, 75], a dynamical symmetry indicator approach has
been formulated recently for the Floquet systems [76]. The
dynamical symmetry indicator serves as a sufficient (but un-
necessary) condition to suggest anomalous Floquet topolog-
ical systems of both the first and higher orders. The advan-

tage for this method is that it allows for a systematic scanning
through various symmetry classes quickly. Also, the issue of
obstruction to form global Wannier wave functions, related to
the topic of “fragile topology” [77–79], has been generalized
into non-interacting first-order anomalous Floquet systems re-
cently [80–82]. It could be of interest to further consider
higher-order topological counterparts in the future. Other top-
ics with recent initial explorations include generalizations of
AFHOTI to semimetals [83–85], non-Hermitian [86, 87], and
interacting systems [88].

Experimentally, the first realization of AFHOTI has been
exhibited in acoustic systems [89, 90]. The experiment set-
ting is based on a circuit-like two-dimensional lattice with two
sublattices. The detection has resolutions in both real space
locations and also in Floquet eigenstate frequency, and there-
fore essentially results like those in Fig. 2 (b) (c) can be ob-
tained, showing the corner states in both 0 and π gaps.

Meanwhile, it may be desirable for future experiment to
also demonstrate the anomalous Floquet higher-order topol-
ogy directly. A recent cold atom experiment [65, 66] points
out a way to detect dynamical singularity by measuring Flo-
quet spectrum gap closure and reopening with the change
of certain parameters. That essentially corresponds to the
physics in Fig. 6 (b) where with the increase of g, a singu-
larity is gradually “deposited” into t ∈ (0,T ) from t = T as g
becomes larger than 2.5. Such a scheme can in principle be
directly generalized into higher-order cases. Further, we have
shown in Sec. V that for the higher-order cases, the bound-
ary obstructed topological phases escapes the descriptions by
dynamical singularity. Thus, it could be a future task to de-
sign schemes that could capture the dynamical polarization
directly.

Finally, it has been a long-term goal to achieve anoma-
lous Floquet phases in solid state systems, both for the first
and higher order cases. The challenge lies at the difficulty
to induce driving amplitudes strong enough to be compara-
ble with solid state sample’s internal energy scales, which
is a typical scenario where anomalous Floquet phases can
emerge. Recently, there has been a proposal [91] to exploit
phonon interactions to drive a trivial insulator into anoma-
lous Floquet phases protected by nonsymmorphic spacetime
symmetries. A realization of the peculiar anomalous Floquet
superconductors in solid state systems may offer an alterna-
tive way for braiding manipulations in quantum computations
by exploiting the simultaneous existence of 0 and π majorana
modes [92].
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